Velocity variations in the uppermost mantle beneath the southern Sierra Nevada and Walker Lane

نویسندگان

  • Brian Savage
  • Chen Ji
  • Don V. Helmberger
چکیده

[1] We model Pn waveforms from two earthquakes in the southwestern United States (Mammoth Lakes, California, and western Nevada) to determine a velocity model of the crustal and mantle structure beneath the southern Sierra Nevada and Walker Lane. We derive a one-dimensional velocity model that includes a smooth crust-mantle transition east of Death Valley and extending south into the eastern Mojave desert. West of Death Valley and toward the Sierra Nevada a low-velocity mantle (Vp = 7.6 km/s) directly below the crust indicates the lithosphere is absent. At the base of this low-velocity structure (at 75–100 km depth) the P wave velocity jumps discontinuously to Vp 8.0 km/s. The area of low velocity is bounded by the Garlock Fault to the south and the Sierra Nevada to the west, but we cannot resolve its northern extent. However, on the basis of teleseismic travel times we postulate that the anomaly terminates at about 38 N. The presence of a low-velocity, upper mantle anomaly in this area agrees with geochemical research on xenoliths from the southern Sierras and recent studies of receiver functions, refraction profiles, tomography, and gravity. However, the velocity discontinuity at 75– 100 km is a new discovery and may represent the top of the once present, now unaccounted for and possibly sunken Sierra Nevada lithosphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seismic anisotropy and velocity structure beneath the southern half of the Iberian Peninsula

Travel times of 11,612 Pn arrivals collected from 7675 earthquakes are inverted to image the uppermost mantle velocity and anisotropy structure beneath the southern half of the Iberian Peninsula and surrounding regions. Pn phases are routinely identified and picked for epicentral distances from 200 to 1200 km. The method used in this study allows simultaneous imaging of variations of Pn velocit...

متن کامل

Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA.

Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, sug...

متن کامل

Rayleigh-Taylor instability under a shear stress free top boundary condition and its relevance to removal of mantle lithosphere from beneath the Sierra Nevada

T33A-1150. Saleeby, J., and Z. Foster (2004), Topographic response to mantle lithosphere removal in the southern Sierra Nevada region, California,Geology,

متن کامل

2-D Surface Wave Tomography in the Northwest Part of the Iranian Plateau

In this study, we obtained two-dimensional tomography maps of the Rayleigh wave group velocity for the northwest part of the Iranian Plateau in order to investigate the structure of the crust and the uppermost mantle of NW Iran. To do this, the local earthquake data during the period 2006-2013, recorded by the 10 broadband stations of the Iranian seismic network (INSN) were used. After the prel...

متن کامل

Mantle instability beneath the Sierra Nevada Mountains in California and Death Valley extension

The Southern Sierra Nevada mountain range rapidly uplifted at ≈3.5 Ma simultaneously with a pulse of basaltic volcanism. Xenoliths recovered from volcanics indicate that the range lost a dense crustal root after the Miocene. The vertical motions and removal of the root have been linked to a fast seismic velocity anomaly that extends ≈200 km into the mantle but is offset to the west of the range...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003